36 research outputs found

    Simulator evaluation of optimal thrust management/fuel conservation strategies for airbus aircraft on short haul routes

    Get PDF
    The feasibility of incorporating optimal concepts into a practical system was determined. Various earlier theoretical analyses were confirmed, and insight was gained into the sensitivity of fuel conservation strategies to nonlinear and second order aerodynamic and engine characteristics. In addition to the investigation of optimal trajectories the study ascertained combined fuel savings by utilizing various procedure-oriented improvements such as delayed flap/decelerating approaches and great circle navigation

    Pitfalls in the characterization of circulating and tissue-resident human γδ T cells

    Get PDF
    Dissection of the role and function of human γδ T cells and their heterogeneous subsets in cancer, inflammation, and auto-immune diseases is a growing and dynamic research field of increasing interest to the scientific community. Therefore, harmonization and standardization of techniques for the characterization of peripheral and tissue-resident γδ T cells is crucial to facilitate comparability between published and emerging research. The application of commercially available reagents to classify γδ T cells, in particular the combination of multiple Abs, is not always trouble-free, posing major demands on researchers entering this field. Occasionally, even entire γδ T cell subsets may remain undetected when certain Abs are combined in flow cytometric analysis with multicolor Ab panels, or might be lost during cell isolation procedures. Here, based on the recent literature and our own experience, we provide an overview of methods commonly employed for the phenotypic and functional characterization of human γδ T cells including advanced polychromatic flow cytometry, mass cytometry, immunohistochemistry, and magnetic cell isolation. We highlight potential pitfalls and discuss how to circumvent these obstacles

    Association of High-Density Lipoprotein-Cholesterol Versus Apolipoprotein A-I With Risk of Coronary Heart Disease: The European Prospective Investigation Into Cancer-Norfolk Prospective Population Study, the Atherosclerosis Risk in Communities Study, and the Women's Health Study.

    Get PDF
    BACKGROUND: The contribution of apolipoprotein A-I (apoA-I) to coronary heart disease (CHD) risk stratification over and above high-density lipoprotein cholesterol (HDL-C) is unclear. We studied the associations between plasma levels of HDL-C and apoA-I, either alone or combined, with risk of CHD events and cardiovascular risk factors among apparently healthy men and women. METHODS AND RESULTS: HDL-C and apoA-I levels were measured among 17 661 participants of the EPIC (European Prospective Investigation into Cancer)-Norfolk prospective population study. Hazard ratios for CHD events and distributions of risk factors were calculated by quartiles of HDL-C and apoA-I. Results were validated using data from the ARIC (Atherosclerosis Risk in Communities) and WHS (Women's Health Study) cohorts, comprising 15 494 and 27 552 individuals, respectively. In EPIC-Norfolk, both HDL-C and apoA-I quartiles were strongly and inversely associated with CHD risk. Within HDL-C quartiles, higher apoA-I levels were not associated with lower CHD risk; in fact, CHD risk was higher within some HDL-C quartiles. ApoA-I levels were associated with higher levels of CHD risk factors: higher body mass index, HbA1c, non-HDL-C, triglycerides, apolipoprotein B, systolic blood pressure, and C-reactive protein, within fixed HDL-C quartiles. In contrast, HDL-C levels were consistently inversely associated with overall CHD risk and CHD risk factors within apoA-I quartiles (P<0.001). These findings were validated in the ARIC and WHS cohorts. CONCLUSIONS: Our findings demonstrate that apoA-I levels do not offer predictive information over and above HDL-C. In fact, within some HDL-C quartiles, higher apoA-I levels were associated with higher risk of CHD events, possibly because of the unexpected higher prevalence of cardiovascular risk factors in association with higher apoA-I levels. CLINICAL TRIAL REGISTRATION: URL: https://www.clinicaltrials.gov. Unique identifier: NCT00000479
    corecore